Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Vaccine ; 40(40): 5798-5805, 2022 09 22.
Article in English | MEDLINE | ID: covidwho-2004584

ABSTRACT

INTRODUCTION: In 2020, prior to COVID-19 vaccine rollout, the Brighton Collaboration created a priority list, endorsed by the World Health Organization, of potential adverse events relevant to COVID-19 vaccines. We adapted the Brighton Collaboration list to evaluate serious adverse events of special interest observed in mRNA COVID-19 vaccine trials. METHODS: Secondary analysis of serious adverse events reported in the placebo-controlled, phase III randomized clinical trials of Pfizer and Moderna mRNA COVID-19 vaccines in adults (NCT04368728 and NCT04470427), focusing analysis on Brighton Collaboration adverse events of special interest. RESULTS: Pfizer and Moderna mRNA COVID-19 vaccines were associated with an excess risk of serious adverse events of special interest of 10.1 and 15.1 per 10,000 vaccinated over placebo baselines of 17.6 and 42.2 (95 % CI -0.4 to 20.6 and -3.6 to 33.8), respectively. Combined, the mRNA vaccines were associated with an excess risk of serious adverse events of special interest of 12.5 per 10,000 vaccinated (95 % CI 2.1 to 22.9); risk ratio 1.43 (95 % CI 1.07 to 1.92). The Pfizer trial exhibited a 36 % higher risk of serious adverse events in the vaccine group; risk difference 18.0 per 10,000 vaccinated (95 % CI 1.2 to 34.9); risk ratio 1.36 (95 % CI 1.02 to 1.83). The Moderna trial exhibited a 6 % higher risk of serious adverse events in the vaccine group: risk difference 7.1 per 10,000 (95 % CI -23.2 to 37.4); risk ratio 1.06 (95 % CI 0.84 to 1.33). Combined, there was a 16 % higher risk of serious adverse events in mRNA vaccine recipients: risk difference 13.2 (95 % CI -3.2 to 29.6); risk ratio 1.16 (95 % CI 0.97 to 1.39). DISCUSSION: The excess risk of serious adverse events found in our study points to the need for formal harm-benefit analyses, particularly those that are stratified according to risk of serious COVID-19 outcomes. These analyses will require public release of participant level datasets.


Subject(s)
COVID-19 , Vaccines , Adult , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , RNA, Messenger , Randomized Controlled Trials as Topic , Vaccination/adverse effects , Vaccines, Synthetic , mRNA Vaccines
2.
Vaccine ; 40(10): 1499-1511, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1700469

ABSTRACT

Myocarditis and/or pericarditis (also known as myopericarditis) are inflammatory diseases involving the myocardium (with non-ischemic myocyte necrosis) and/or the pericardial sac. Myocarditis/pericarditis (MPC) may present with variable clinical signs, symptoms, etiologies and outcomes, including acute heart failure, sudden death, and chronic dilated cardiomyopathy. Possible undiagnosed and/or subclinical acute myocarditis, with undefined potential for delayed manifestations, presents further challenges for diagnosing an acute disease and may go undetected in the setting of infection as well as adverse drug/vaccine reactions. The most common causes of MPC are viral, with non-infectious, drug/vaccine associated hypersensitivity and/or autoimmune causes being less well defined and with potentially different inflammatory mechanisms and treatment responses. Potential cardiac adverse events following immunization (AEFIs) encompass a larger scope of diagnoses such as triggering or exacerbating ischemic cardiac events, cardiomyopathy with potential heart failure, arrhythmias and sudden death. The current published experience does not support a potential causal association with vaccines based on epidemiologic evidence of relative risk increases compared with background unvaccinated incidence. The only evidence supporting a possible causal association of MPC with a vaccine comes from case reports. Hypersensitivity MPC as a drug/vaccine induced cardiac adverse event has long been a concern for post-licensure safety surveillance, as well as safety data submission for licensure. Other cardiac adverse events, such as dilated cardiomyopathy, were also defined in the CDC definitions for adverse events after smallpox vaccination in 2006. In addition, several groups have attempted to develop and improve the definition and adjudication of post-vaccination cardiovascular events. We developed the current case definitions for myocarditis and pericarditis as an AEFI building on experience and lessons learnt, as well as a comprehensive literature review. Considerations of other etiologies and causal relationships are outside the scope of this document.


Subject(s)
Myocarditis , Pericarditis , Vaccination , Humans , Incidence , Myocarditis/chemically induced , Myocarditis/diagnosis , Myocarditis/epidemiology , Pericarditis/diagnosis , Pericarditis/epidemiology , Pericarditis/etiology , Vaccination/adverse effects
3.
Euro Surveill ; 26(33)2021 Aug.
Article in English | MEDLINE | ID: covidwho-1367740

ABSTRACT

The South Korea mass vaccination programme administered 3.8 million doses of COVID-19 vaccinations between 26 February and 30 April 2021. After 173 suspected anaphylaxis reports to the nationwide monitoring system for adverse events following immunisation, 44 anaphylaxis cases were confirmed using Brighton Collaboration case definitions. The rates per million doses were 18.2 cases and 6.2 cases for Vaxzevria and Comirnaty, respectively. Median time of onset was 14 min after vaccination and most cases had recovered at the time of review.


Subject(s)
Anaphylaxis , COVID-19 , Anaphylaxis/chemically induced , Anaphylaxis/diagnosis , Anaphylaxis/epidemiology , Humans , Mass Vaccination , Republic of Korea/epidemiology , SARS-CoV-2 , Vaccination/adverse effects
5.
Vaccine ; 38(49): 7702-7707, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-867163

ABSTRACT

Several live-attenuated viral vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of live-attenuated viral vaccines. This will help key stakeholders assess potential safety issues and understand the benefit-risk of such vaccines. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed live-attenuated viral vaccines.


Subject(s)
Drug Evaluation, Preclinical/standards , Vaccines, Attenuated/adverse effects , Viral Vaccines/adverse effects , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Risk Assessment , Societies, Scientific , Vaccines, Attenuated/pharmacology , Viral Vaccines/pharmacology
6.
Vaccine ; 38(49): 7708-7715, 2020 11 17.
Article in English | MEDLINE | ID: covidwho-745909

ABSTRACT

Many of the vaccines under development for COVID-19 involve the use of viral vectors. The Brighton Collaboration Benefit-Risk Assessment of Vaccines by Technology (BRAVATO, formerly the Viral Vector Vaccine Safety Working Group, V3SWG) working group has prepared a standardized template to describe the key considerations for the benefit-risk assessment of viral vector vaccines. This will facilitate key stakeholders to anticipate potential safety issues and interpret or assess safety data. This would also help improve communication and public acceptance of licensed viral vector vaccines.


Subject(s)
Drug Evaluation, Preclinical/standards , Vaccines, Attenuated/adverse effects , Viral Vaccines/adverse effects , Animals , Genetic Vectors , Humans , Internet , Risk Assessment
7.
Vaccine ; 38(39): 6184-6189, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-701883

ABSTRACT

Inactivated viral vaccines have long been used in humans for diseases of global health threat and are now among the vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of inactivated viral vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of the vaccine platform. The standardized and structured assessment provided by the template would also help to contribute to improved communication and support public acceptance of licensed inactivated viral vaccines.


Subject(s)
Coronavirus Infections/prevention & control , Drug Approval/legislation & jurisprudence , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Risk Assessment , Viral Vaccines/standards , Betacoronavirus/drug effects , Betacoronavirus/immunology , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Civil Defense , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/virology , Government Regulation , Humans , Immunogenicity, Vaccine , International Cooperation , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Vaccines, Inactivated , Viral Vaccines/administration & dosage , Viral Vaccines/biosynthesis
8.
Vaccine ; 38(35): 5734-5739, 2020 07 31.
Article in English | MEDLINE | ID: covidwho-640754

ABSTRACT

Several protein vaccine candidates are among the COVID-19 vaccines in development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template would also help contribute to improved public acceptance and communication of licensed protein vaccines.


Subject(s)
Viral Vaccines/adverse effects , Viral Vaccines/immunology , Antigens, Viral/administration & dosage , Antigens, Viral/adverse effects , Antigens, Viral/immunology , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Humans , Patient Safety , Risk Assessment , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Viral Proteins/administration & dosage , Viral Proteins/adverse effects , Viral Proteins/immunology , Viral Vaccines/administration & dosage
9.
Vaccine ; 38(34): 5556-5561, 2020 07 22.
Article in English | MEDLINE | ID: covidwho-617212

ABSTRACT

Nucleic acid (DNA and RNA) vaccines are among the most advanced vaccines for COVID-19 under development. The Brighton Collaboration Viral Vector Vaccines Safety Working Group (V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of nucleic acid vaccines. This will facilitate the assessment by key stakeholders of potential safety issues and understanding of overall benefit-risk. The structured assessment provided by the template can also help improve communication and public acceptance of licensed nucleic acid vaccines.


Subject(s)
Risk Assessment/methods , Vaccines, DNA/adverse effects , Vaccines, DNA/standards , Viral Vaccines/genetics , Viral Vaccines/standards , COVID-19 Vaccines , Coronavirus Infections/genetics , Coronavirus Infections/prevention & control , Humans , Public Opinion , Risk Assessment/standards , Vaccines, DNA/genetics , Viral Vaccines/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL